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The pair correlation function for He4 gas is calculated in the following way: Two- 
and three-particle Slater sums are expressed in terms of Wiener path integrals. The 
three-particle path integral is approximated by a product of two-particle path integrals. 
From tabular values of these path integrals obtained previously, the pair correlation 
function is obtained by quadrature. Comparison is made with existing calculations 
employing the three-particle term. 

1. INTRODUCTION 

In classical statistical mechanics, the Mayerffunction is used to develop terms 
in the density expansion of quantities such as the pressure and the pair distribution 
function. There is a quantum mechanical analog to this which reduces to the 
Mayer f function in the classical limit; this analogous function is called the 
F function. It is easy to write down the expression for any quantum mechanical 
cluster integral in terms of F functions; one simply replaces the product of 
f functions in the classical cluster integral by the Wiener integral of a product 
of corresponding F functions. These formal manipulations have been described 
by Dewitt and Fishbane [l] and they determined some of the early terms of 
the Wigner-Kirkwood expansion of the second and third virial coefficients with 
this approach. Now in the quantum mechanical cluster integral one cannot 
replace the Wiener integral of the product of F functions by the product of the 
Wiener integrals of the F functions; this corresponds to the fact that one cannot, 
in general, replace the average of a product by a product of averages. Dewitt and 
Fishbane showed that, in the case of the third virial coefficient, the error committed 
in such a replacement is 0(Si4); however, they made no estimate of the actual 
magnitude of this error. Here some results of numerical computations are presented 
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which show that this error is small down to temperatures of about 10°K. This 
result is particularly interesting because it suggests that one can actually compute 
quantum mechanical cluster integrals as easily as classical cluster integrals with 
reasonable accuracy above lOoK, by using the same Monte Carlo sampling 
scheme as used in the classical case. 

2. NOTATION AND DEFINITIONS 

Let H be the Hamiltonian for the system and W,(l, 2) the two-particle Slater 
sum; namely, 

W,(l, 2) = he c Yi*(l, 2) &?P$(l, 2), (1) 

where X is the thermal wavelength, 

h = (27rh2/3/m)1/2, (2) 

and the summation extends over all states without regard to symmetry. For dilute 
gases the pair distribution function n,(l, 2) can be expanded in a power series 
in the number density n and the result is 

n,(l, 2) = n2(1 + ng) W,(l, 2) + O(n4), (3) 

where g is given by 

g = w(; 2) 1 W2(1? 2, 3) - W2(1, 2) w2t1, 3) 
2 3 

- W,(l, 2) W2(2, 3) - W,(l, 2)] d3. (4) 

The quantity W,(l, 2,3) is the three-particle Slater sum, and the particular 
approximation that we are concerned with here is 

W,(l, 293) E W2& 2) w,u, 3) W2(2,3). (5) 

Substitution of this approximation for W, in Eq. (4) yields the following approxi- 
mation for g: 

g E I = j- W,U, 3) - llW2(2,3) - 11 d3, (6) 

a form reminiscent of the classical expression for the same quantity. Dewitt and 



APPROXIMATION FOR PATH INTEGRALS 159 

Fishbane showed that the error in this approximation is 0(fi2), and when it is 
used to compute the third virial coefficient 

c = $ J g dl d2 - [+ 1 (W(1,2) - 1) dl d212 (7) 

the error is 0(fi4). 
From the viewpoint of the Wiener integral formulation [2] the approximation 

in Eq. (5) can be described in the following way. Let V(i, j) be the potential energy 
function for the interaction between the 6th and j-th particles. Let ~(7) be a 
three-dimensional Wiener path associated with the i-th particle. Then the two- 
particle Slater sum is given in terms of a conditional Wiener integral by 

where 
W,(l, 2) = E{exp(-/Xi) I ~(1) = ‘12(1) = 01, (8) 

vl”z = s,’ v (1 + -&= R(T), 2 + -& q2(7)) dr. (9) 

It is to be noted that in the classical limit (A -+ 0) 

Fit -+ w, 3, 

W2(1, 2) -+ exp(--BW 2)). 

Similarly, the three-particle Slater sum expressed in terms of Wiener integrals is 

wdl, 2, 3) = Wxp(--8Gd I ~(1) = q2(l) = ~(1) = (3, (11) 

where 

Let US now assume that the potential energy V&2,3) describing the interaction 
among three particles can be expressed as a sum of pair potentials, viz., 

Jq, 2,3) = w, 2) + w, 3) + m 3). (13) 

It follows immediately that 

w2(1, 2, 3) = E{exp(+(JG + V,*, + V1*3)) I ~(1) = O}, (14) 

where, for short, the set of end-point conditions is written as a single equation, 
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~(1) = 0. In view of the fact that V$ -+ Vii in the classical limit, the approximation 

wdl, 2, 3) E -Wv(--PV&) IT(~) = 01 E&d--BV,*,) I ~(1) = 01 

x Wxp(-W&l I rl(l) = 01 (1% 

seems like a reasonable one for small thermal wavelengths. This is exactly the 
approximation displayed in Eq. (5). From the viewpoint of the Wiener paths, 
this approximation neglects correlations between the exponentials which exist 
because each pair of exponentials has a common path. We will call this the super- 
position approximation. 

It will be noted from this discussion that the E; function, mentioned in the 
introduction, is 

Fij = exp(-/IV;) - 1. 

The quantum mechanical analog of the classical cluster integral, 

is 

b = +P /jjkfixf,, dl d2 d3, 

b, = + 1‘11 E{E;,F,,F,, j $1) = 0} dl d2 d3. 

3. COMPUTATIONS 

These computations are for a Lennard-Jones potential, 

V(i, j) = 401 [[c)-l’ - (5)-l], (16) 

Y= Ii-ji, 

with the deBoer and Michels values 

a = 14.04 x lo-l6 erg, u = 2.56 x lo-* cm (17) 

appropriate for He4. For this potential the computation of g, Eq. (4), has already 
been done [3]. That computation did not employ the approximation in Eq. (5) 
and we will call those results “exact.” Here we have computedj using the expression 
on the right side of Eq. (6), resulting from the approximation in Eq. (5), and 
compared them with the exact results. For the purpose of this computation we 
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used values of W, tabulated in an earlier computation [4], and the integral in 
Eq. (6) was evaluated numerically from those tabulated values. Some details of 
the numerical evaluation of this integral follow. 

Cylindrical coordinates are used to describe the location of the third molecule 
and the z axis is chosen so that molecules 1 and 2 lie on the z axis and are symmet- 
rically displaced a distance a with respect to the 0rigin.l This is illustrated in Fig. 1. 
Hence we have the relations 

1 1 - 3 1 = v/r2 + (b + a)” G R, , 

12 - 3 / = drz + (b - u)~ G: R- , 

/ 1 - 2 1 = 2a = R,, . 

(18) 

FIG. 1. Coordinate system describing position of third particle. 

Since the integrand is independent of the azimuth and invariant to the reflection 
z --+ -z, we can obtain immediately 

g=2lr Oz 
ss m Ws@+) - l)WdR-1 - 1) d5 dz, (1% 0 0 

where 
LJ = 9. (20) 

1 It occurred to us only later that bipolar coordinates would have been a better choice and we 
have used them in subsequent work. The advantage of bipolar coordinates was also pointed out 
by a referee. 

581/7/1-II 
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A grid in the 5, z plane was laid down with spacing 

c = Of = constant, 

d = dz = constant, 

and the following elementary approximation for the integral was used: 

where 

fi = (i - 4) Cq 

Zj = (j - 4) d, 

and the determination of A4 is described below. So, in particular, we have 

(21) 

(22) 

(23) 

where 

jf g 2md f f [W,(R$ - 11[ I+‘,(&) - I], 
i-1 j-1 

(24) 

RFj = {(i - &) c + ((j - 1) d & CI)~}~‘~. (25) 

The determination of M was made in the following way. When R is sufficiently 
large, W,(R) can be approximated by the leading term in the Wigner-Kirkwood 
expansion, viz., 

W,(R) E e+4Ba(uiR’G, 

p = 0 drrlh. 
(26) 

The criterion for using this approximation was chosen, somewhat arbitrarily, 
to be that the ratio of the next two terms to the (p/R)” term be 1O-2 or less. Writing 
the Wigner-Kirkwood expansion to this many terms we have 

W2(R) = exp [4&y (-$)’ - 4/3a (%)” + 7 (f)* + 0 ((5)l”)]. (27) 

Consequently the maximum value of R is chosen to satisfy the inequalities 

(~/RmaxY~ < 1o-2 

(p/RmaxY - 

(28) 
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From the first of these we get 

R max 2 16 (29) 

and from the second 

and since, from Eq. (25), 

R mm b =p, (30) 

R mm = Md, 

we obtain as the equation for the determination of M 

(31) 

11 . (32) 

If E denotes the error committed in restricting the quadrature to a region of 
finite extent in the 5, z plane, say the rectangle 0 < z < z, , 0 d [ < .z& , then 
under the approximation of the last paragraph 

E < zT cm Cm @4016(~lR+)~ - l)(e4afi(olR-)B - 1) dz d,$ 

1 o-- 

6.8 -- 

0.6 -- 

T= IO” K 

(a) 

(33) 

FIGURE 2 

.581/7/1-II* 
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T=20” K 
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FIG. 2. Pair correlation function, g, as a function of 1 1 - 2 I/u at lO”K, 20”K, 30°K. The 
continuous line represents computed values of the approximation g’, and the points indicate the 
“exact” values of g according to Ref. [3]. 

TABLE I 

Third Virial Coefficient C(T) in Units of cme/mole* at Different Temperatures Obtained 
from the Superposition Approximation Used Here and from the Work of Jordan and Fosdick [3] 

VW 10 20 30 40 50 75 100 273 

C(T) (Sup. approx.) 381 258 212 184 176 152 142 183 

C(T) (Jordan and Fosdick, Ref. [3]) 515 286 226 195 178 162 150 107 
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An estimation of the integrals on the right side of this inequality shows E to be 
negligible for most values of a. The error is only large when a is very large, 
corresponding to the molecules being close to the edge of the finite region. 

In Figs, 2a, b, and c, g as a function of 1 1 - 2 I/U is shown for temperatures 
lOoK, 20”K, and 30”K, respectively. The isolated points represent the “exact” 
results. Rather good agreement is seen between the “exact” results and those 
which were obtained from the superposition approximation. The discrepancies 
at small / 1 - 2 I/U are not particularly important since W,(l, 2) is nearly zero 
when 1 1 - 2 I/u is less than about 0.8 and it is the product W,(l, 2)g which 
enters in the pair distribution function n&2). In Figs. 3a and b the pair distribu- 

1=10-K 
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A n=o.25 
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FIG. 3. Pair distribution function n&l, 2) as a function of 1 1 - 2 I/U at lOoK, 20”K, and 
different densities. 

tion function at T = 10°K and 20°K at two densities is shown. The isolated 
points represent the exact results. Finally, in Table I the third virial coefficient 
in the superposition approximation is compared with the “exact” values. The 
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discrepancy in the virial coefficient values at high temperatures is probably due 
to the error in estimating the contribution from values of g at large values of 
1 1 - 2 I/G which are needed in the numerical evaluation of the integral on the 
right side of Eq. (7). The discrepancy at lO”K, somewhat greater than 20x, 
is probably a result of the cumulative effect of the error due to the integration. 
Since the contribution to the integral at large 1 1 - 2 I/u also seems to be important 
at 10°K this effect may also increase the error. 
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